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Background

Background

Smith and Wilkinson (1969) : i.i.d. environment, extinction.
Athreya and Karlin (1971) : stationary and ergodic
environment, fundamental limit theorems.
Critical and subcritical cases : survival probability and
conditional limit theorems (d ≥ 1), see e.g. Vatutin &
Dyakonova (2020, 2018), Vatutin & Wachtel (2018), Le
Page, Peigné & Pham (2018) for d > 1, Afanasyev,
Böinghoff, Kersting & Vatutin (2014, 2012), Afanasyev,
Geiger, Kersting & Vatutin (2005) for d = 1.
Supercritical case : large deviations (d = 1), see e.g.
Buraczewski & Dyszewski (2020), Grama, Liu & Miqueu
(2017), Bansaye & Böinghoff (2014, 2013, 2011), Huang &
Liu (2012), Bansaye & Berestycki (2009).

Here we focus on the supercritical case with d > 1, and search
for asymptotic properties.
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Model

Multi-type branching process

FIGURE – Division of a cancer cell
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Model

Multi-type Galton-Watson process

A d-type branching process Z i
n = (Z i

n(1), · · · ,Z i
n(d))T , n ≥ 0 :

Z i
0 = ei (one initial particle of type i)

Z i
n+1 =

d∑
r=1

Z i
n(r)∑
l=1

N r
l,n n ≥ 0,

Z i
n(j) = number of particles of type j in generation n ;

N r
l,n(j) = offspring of type j of the l-th particle of type r , of generation n.

Galton-Watson process : all N r
l,n are independent, and

have p.g.f. indep. of n and l : for s = (s1, · · · , sd ) ∈ [0,1]d ,

f r (s) = E
( d∏

j=1

s
N r

l,n(j)
j

)
=

∞∑
k1,··· ,kd=0

pr
k1,··· ,kd

sk1
1 · · · s

kd
d ,

i.e. P(N r
l,n = k) = pr

k , ∀k = (k1, · · · , kd )T ,n ≥ 0, l ≥ 1.



9 / 33

Introduction The Kesten-Stigum theorem The fundamental martingale Applications

Model

Branching process in a random environment

The offspring distributions of gen. n depend on the random
environment ξn at time n ; the random environment sequence
ξ = (ξ0, ξ1, · · · ) is i.i.d. Denote

Pξ = P(·|ξ) (quenched law), Eξ = E[·|ξ]

Conditioned on ξ,
the r.v.’s N r

l,n are independent for l ≥ 1, n ≥ 0, 1 ≤ r ≤ d ;
each N r

l,n, l ≥ 1 has probability generating function

f r
ξn

(s) = Eξ
( d∏

j=1

s
N r

l,n(j)
j

)
=

∞∑
k1,··· ,kd=0

pr
k1,··· ,kd

(ξn)sk1
1 · · · s

kd
d .

i.e. Pξ(N r
l,n = k) = pr

k (ξn), ∀k = (k1, · · · , kd )T ,n ≥ 0, l ≥ 1.
Zn reduces to the Galton-Watson process if ξn = c (const.) ∀n.
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Model

Lyapunov exponent and LLN for the mean matrices Mn

Consider the mean matrices Mn of the offspring distributions
and their products : for n, k ≥ 0,

Mn(i , j) = Eξ
[
Zn+1(j)

∣∣Zn = ei
]

=
∂f i
ξn

∂sj
(1), Mk ,n := Mk · · ·Mn.

Then EξZ i
n(j) = M0,n−1(i , j). Assume E log+ ‖M0‖ < +∞. The

Lyapunov exponent of the mean matrices (Mn) is

γ = lim
n→+∞

1
n
E log ‖M0,n−1‖ = inf

k≥1

1
k
E log ‖M0,k−1‖.

The following strong law of large numbers has been established
by Furstenberg and Kesten (1960) :

lim
n→+∞

1
n

log ‖Mn−1,0‖ = γ P-a.s.
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Model

γ = lim
n→+∞

1
n
E log ‖M0,n−1‖ = inf

k≥1

1
k
E log ‖M0,k−1‖.

Classification

We say that the multi-type branching process (Z i
n) in the

random environment ξ is :
sub-critical if γ < 0 (‖Z i

n‖ −→n→+∞
0 P-a.s.)

critical if γ = 0 (‖Z i
n‖ −→n→+∞

0 P-a.s.)

supercritical if γ > 0 (P(‖Z i
n‖ −→n→+∞

+∞) > 0.)

Here we only consider the supercritical regime, i.e. γ > 0.

For the critical and subcritical cases : see e.g. Vatutin &
Dyakonova (2020, 2018), Vatutin & Wachtel (2018), Le Page,
Peigné & Pham (2018) for the study of survival probability.
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Objective

Kesten-Stigum theorem on the GW process

The famous Kesten-Stigum theorem (1966) on the multi-type
Galton-Watson process (constant environment case) gives the
exponential increasing rate of the population size via a criterion
for the non-degeneracy of the limit of the fundamental
branching martingale.

Our work is motivated by getting a full extension of the
Kesten-Stigum theorem to the random environment case. We
will find exactly when the population size Z i

n(j) grows like its
mean :

Z i
n(j) ≈ EξZ i

n(j) = M0,n−1(i , j),

which implies that the process explodes to +∞ at an
exponential rate, and permets us to compare in a precise way a
branching process in a random environment with the products
of random matrices.
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Objective

Extending Kesten-Stigum theorem to random
environment : long standing problem

Extending the Kesten-Stigum theorem to random environment
is a long standing problem. For the single type case (d=1), the
problem was solved by Athreya and Karlin (1971, sufficiency),
and Tanny (1988, necessity). But for the multi-type case
(d > 1), it has been open for about 50 years.
Our objective : solve this problem in the typical case, by
constructing a suitable martingale which reduces to the
fundamental branching martingale in the constant environment
case, and by establishing a criterion for the non-degeneracy of
its limit.
Applications : this work open ways in establishing other
fundamental limit theorems, such as law of large numbers,
central limit theorems with Berry-Essen bound, and large
deviation results.
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The multi-type Galton-Watson process

This is the constant environment case : each ξn is equal to the
same constant. Thus the mean matrices Mn are the same
constant (non-random) matrix :

M := M0 = M1 = . . . = const . matrix

Perron-Frobénius theorem
Assume that M is primitive, i.e. there exists n ≥ 0 such that
Mn > 0. Then the spectral radius ρ > 0 of M is a simple
eigenvalue of M, and there exist u, v ∈ Rd , respectively the
unique associated right and left eigenvectors such that :

u > 0 and v > 0 ;
‖u‖ = 1 and 〈u, v〉=1 ;
Mu = ρu and MvT = ρvT ;
Mn(i , j) ∼ ρnu(i)v(j), 1 ≤ i , j ≤ d .
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The multi-type Galton-Watson process

Kesten-Stigum theorem on G-W process (1966)
Assume that M is primitive with spectral radius ρ > 1. Then
there exist r.v.’s W i ∈ [0,∞) such that for all 1 ≤ j ≤ d ,

Z i
n(j)

EZ i
n(j)

=
Z i

n(j)
Mn(i , j)

→
n→+∞

W i P-a.s.,

or equivalently, Z i
n(j)

ρnu(i)v(j) →W i a.s. where u, v > 0, Mu = ρu,MvT = ρvT .

Moreover, max
1≤i≤d

P(W i = 0) < 1 (non-degenerate) iff

max
1≤i,j≤d

E
(
Z i

1(j) log+ Z i
1(j)
)
< +∞. (∗)

When (∗) holds, then for all 1 ≤ i ≤ d , EW i = 1, and a.s.

{W i = 0} = {‖Z i
n‖ →

n→+∞
0}, {W i > 0} = {‖Z i

n‖ →
n→+∞

+∞}.
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The multi-type branching process in random environment

Condition FK (Furstenberg- Kesten)

There exists a constant C > 1 such that

1 ≤
max

1≤i,j≤d
M0(i , j)

min
1≤i,j≤d

M0(i , j)
≤ C P-a.s.

LLN for the components M0,n−1(i , j) (Furstenberg-Kesten 1960)

Assume condition FK and E log+ ‖M0‖ < +∞. Then for all
1 ≤ i , j ≤ d ,

lim
n→+∞

1
n

log M0,n−1(i , j) = γ P-a.s.
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The multi-type branching process in random environment

KS theorem (Grama-Liu-Pin, Ann. Appl. Prob. 2021+)

Assume condition FK, γ > 0, and ξ = (ξn)n≥0 i.i.d. Then there
exist random variables W i ∈ [0,∞) such that for all 1 ≤ j ≤ d ,

Z i
n(j)

EξZ i
n(j)

=
Z i

n(j)
M0,n−1(i , j)

P−→
n→+∞

W i

Moreover, max
1≤i≤d

P(W i = 0) < 1 (W i non-degenerate) iff

max
1≤i,j≤d

E
( Z i

1(j)
M0(i , j)

log+
Z i

1(j)
M0(i , j)

)
< +∞. (∗)

When (∗) holds, then for all 1 ≤ i ≤ d , a.s. EξW i = 1 and

{W i = 0} = {‖Z i
n‖ →

n→+∞
0}, {W i > 0} = {‖Z i

n‖ →
n→+∞

+∞}.

A similar version is found for stationary and ergodic environment.
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The multi-type branching process in random environment

Remarks

1 When d = 1, due to Athreya-Karlin (1971) and Tanny
(1988)

2 Cohn (Ann. Prob. 1988) claimed the convergence in L2 of
Z i

n(j)
EξZ i

n(j)
, under some bounded conditions on the first and

second moments of the offspring distribution. But there is a
missing quantitative condition in his claim (which is
essential even in the single type case d = 1).

3 Jones (1997), Biggins, Cohn and Nerman (1999) have
studied respectively the L2 and Lp (p > 1) convergence of
multi-type branching processes in varying environment.
Their results give sufficient conditions for quenched Lp

convergence for multi-type branching processes in random
environments.
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The Galton-Watson process

This is the constant environment case : all ξn are equal to the
same constant, so that all the mean matrices Mn are the same
constant (non-random) matrix :

M := M0 = M1 = . . . = const . matrix .

By the Perron-Frobenius theorem, when M is primitive, the
spectral radius ρ > 0 of M is a simple eigenvalue of M, with
unique right eigenvector u ∈ Rd such that :

u > 0 ;
‖u‖ = 1 ;
M u = ρ u.

Obviously the last relation, M u = ρ u, is stable for products of
M :

Mn u = ρn u, n ≥ 1.
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The Galton-Watson process

Fundamental Martingale for the Galton-Watson process

Assume that M is primitive with spectral radius ρ > 1. Then for
all 1 ≤ i ≤ d ,

W i
0 = 1, W i

n =
〈Z i

n,u〉
ρnu(i)

, n ≥ 1,

is a non-negative martingale w.r.t. the filtration

Fn = σ
(
N r

l,k (j),0 ≤ k ≤ n − 1,1 ≤ r , j ≤ d , l ≥ 1
)
,

so that W i := limn→∞W i
n exists a.s. with values in [0,∞).

The key point in the proof is the fact that Mnu = ρnu.

How to extend this to RE is not so clear : one would think of
〈Z i

n,U0,n−1〉
ρ0,n−1U0,n−1

or 〈Z i
n,U0,n−1〉

(M0,n−1U0,n−1)(i)
, with ρ0,n−1 the spectral radius of

M0,n−1 and M0,n−1U0,n−1 = ρ0,n−1U0,n−1, but these are not martingales.
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The multi-type branching process in random environment

Consider the products of matrices :

Mn,n+k = Mn . . .Mn+k , n, k ≥ 0.

Condition H
M0 is allowable (every row and column contains a strictly
positive element) P-a.s., and P(∃k ≥ 0 M0,k > 0) > 0.

By the Perron-Frobenius theorem, under condition H, the
spectral radius ρn,n+k of Mn,n+k is a strictly positive eigenvalue
of Mn,n+k , with right and left eigenvectors Un,n+k and Vn,n+k
such that :

Un,n+k ≥ 0 and Vn,n+k ≥ 0 ;
‖Un,n+k‖ = 1 and 〈Un,n+k ,Vn,n+k 〉 = 1 ;
Mn,n+k Un,n+k = ρn,n+k Un,n+k ;
MT

n,n+k Vn,n+k = ρn,n+k Vn,n+k .



27 / 33

Introduction The Kesten-Stigum theorem The fundamental martingale Applications

The multi-type branching process in random environment

Pseudo spectral radii of pos. random matrices (Hennion 1997)
Assume condition H. Then for all n ≥ 0, a.s.

Un,∞ := lim
k→+∞

Un,n+k > 0 with ‖Un,∞| = 1;

the scalars λn = ‖MnUn+1,∞‖ are strictly positive and satisfy

MnUn+1,∞ = λnUn,∞. (∗)

The sequences (Un,∞)n≥0 et (λn)n≥0 are stationary and
ergodic, Un,∞ and λn depend only on ξn, ξn+1, . . .

The numbers λn are called pseudo spectral radii of (Mn).
The relation (*) is stable for products : for all n, k ≥ 0,

Mn,n+k Un+k+1,∞ = λn,n+k Un,∞, with λn,n+k := λn . . . λn+k .
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The multi-type branching process in random environment

Fundamental martingale for the multi-type branching process in
random environment (Grama-Liu-Pin 2021+)
Assume condition H. Then for all 1 ≤ i ≤ d ,

W i
0 = 1, W i

n =
〈Z i

n,Un,∞〉
λ0,n−1U0,∞(i)

=
〈Z i

n,Un,∞〉
(M0,n−1Un,∞)(i)

, n ≥ 1.

is a non-negative martingale w.r.t. the filtration

Fn = σ
(
ξ,N r

l,k (j),0 ≤ k ≤ n − 1,1 ≤ r , j ≤ d , l ≥ 1
)
,

under the laws P and Pξ, so that

W i := lim
n→∞

W i
n exists a.s. with values in [0,∞).

When ξn = const., W i
n = 〈Z i

n,u〉
(Mnu)(i) = 〈Z i

n,u〉
ρnu(i) since Mnu = ρnu.

When d = 1, W 1
n = Z 1

n
m0···mn−1

, mj =
∑

k kpk (ξj).
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The multi-type branching process in random environment

Proof of the fundamental martingale

Eξ[Z i
n+1(j)

∣∣Fn] =
d∑

r=1

Z i
n(r)∑
l=1

EξN r
l,n(j) =

d∑
r=1

Z i
n(r)Mn(r , j) = (MT

n Z i
n)(j).

Eξ[W i
n+1
∣∣Fn] =

〈Eξ[Z i
n+1

∣∣Fn],Un+1,∞〉
λ0,nU0,∞(i)

=
〈MT

n Z i
n,Un+1,∞〉

λ0,nU0,∞(i)
(since Eξ[Z i

n+1
∣∣Fn] = MT

n Z i
n)

=
〈Z i

n,MnUn+1,∞〉
λ0,nU0,∞(i)

=
〈Z i

n, λnUn,∞〉
λ0,nU0,∞(i)

(since MnUn+1,∞ = λnUn,∞)

=
〈Z i

n,Un,∞〉
λ0,n−1U0,∞(i)

(since λ0,n = λ0,n−1λn) = W i
n.
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The multi-type branching process in random environment

Equivalence of the product λ0,n−1

Assume condition H. Then

λ0,n−1 ∼
n→+∞

ρ0,n−1〈V0,n−1,Un,∞〉 P-a.s.

LLN for the product λ0,n−1

Assume condition H and E log+ ‖M0‖ < +∞. Then the
expectation E log λ0 is well defined, and

lim
n→+∞

1
n

log λ0,n−1 = E log λ0 = γ P-a.s.
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Applications

The Kesten-Stigum theorem can be applied to establish other
very interesting limit theorems such as :

Law of large numbers and large deviations for Z i
n(j) and

‖Z i
n‖ =

∑n
j=1 Z i

n(j) (total population of gen. n)
Central limit theorem, Berry-Essen bound and Cramér’s
moderate deviation expansion for Z i

n(j), and ‖Z i
n‖.

LLN and CLT are immediate consequences : e.g. a.s. on the
survival event S := {‖Z i

n‖ → ∞}, with Z̄ i
n(j) = Z i

n(j)
M0,n−1(i,j)

,

log Z i
n(j)

n
=

log M0,n−1(i , j)
n

+
log Z̄ i

n(j)
n

→ γ,

as Z̄ i
n(j)→W i ∈ (0,∞) a.s. on S.
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Berry-Esseen bound and Cramér’s LD expansion

For the rates of convergence in the LLN and CLT, a careful
analysis is still needed.
For example, using recent results on the products of random
matrices by Grama-Liu-Xiao (J. European Math. Soc., 2021+),
we obtained (see hal-02911865 and hal-02934081) :

1 Berry-Esseen’s bound for log ‖Z i
n‖ , which gives the absolute

error in the Gaussian approximation :

sup
x∈R

∣∣∣P( log ‖Z i
n‖ − nγ
σ
√

n
≤ x

)
−Φ(x)

∣∣∣ ≤ C√
n
, Φ(x) =

∫ x

−∞

1√
2π

e−t2/2dt .

2 Cramér’s large deviation expansion , which gives an asymptotic
expression of the the relative error in the Gaussian approx. :

P
(

log ‖Z i
n‖−nγ

σ
√

n > x
)

1− Φ(x)
= · · · (asym. expression), 0 ≤ x = o(

√
n).

More results can be found in the thesis by Erwan Pin (2020).
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