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Background

@ Smith and Wilkinson (1969) : i.i.d. environment, extinction.

@ Athreya and Karlin (1971) : stationary and ergodic
environment, fundamental limit theorems.

@ Critical and subcritical cases : survival probability and
conditional limit theorems (d > 1), see e.g. Vatutin &
Dyakonova (2020, 2018), Vatutin & Wachtel (2018), Le
Page, Peigné & Pham (2018) for d > 1, Afanasyey,
Boinghoff, Kersting & Vatutin (2014, 2012), Afanasyev,
Geiger, Kersting & Vatutin (2005) for d = 1.

@ Supercritical case : large deviations (d = 1), see e.g.
Buraczewski & Dyszewski (2020), Grama, Liu & Miqueu
(2017), Bansaye & Bdinghoff (2014, 2013, 2011), Huang &
Liu (2012), Bansaye & Berestycki (2009).

Here we focus on the supercritical case with d > 1, and search
for asymptotic properties.
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Model

Multi-type Galton-Watson process

A d-type branching process Z, = (Z}(1),--- ,Zi(d))",n>0:

Z=e; (one initial particle of type /)
d Zi(r)

n+1_ZZNIn nZ ’

r=1 I=1

@ Z!(j) = number of particles of type j in generation n;
() N/rn(j) = offspring of type j of the /-th particle of type r, of generation n.
@ Galton-Watson process : all N/, are independent, and

have p.g.f. indep. of nand / : for s = (sy,--- , s4) € [0, 1]9,

< N0
:E(Hsj/’n ): Z Pk1, kSt S
j=1

K, kg=
i.e. P(N/ =k)=p,, Vk= k1,-~,kd T'n>0,1>1.
I,n k
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Model

Branching process in a random environment

The offspring distributions of gen. n depend on the random
environment &, at time n; the random environment sequence
¢ =(&,&1,- ) isi.id. Denote

Pe = P(-|¢) (quenched law), E¢ =E[[¢]

Conditioned on &,
o ther.v’s Nj, are independentfor/ >1,n>0,1<r<d;
@ each N,fn, I > 1 has probability generating function

o-s([14) - 5 et

k1 PA 7kd:O

i.e. Pe(N],, = k) = pi(&n), VK = (K1, ka)T,n>0,1>1.
Z,, reduces to the Galton-Watson process if £, = ¢ (const.) Vn.
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Lyapunov exponent and LLN for the mean matrices M,

Consider the mean matrices M, of the offspring distributions
and their products : for n, k > 0,
- . ot
Mili.J) = Ee [Zn11G)|Z0 = &) = 52(1), Mep = My M,
j
Then EcZ)(j) = Mo.n_1(i,j). Assume Elog" |[My|| < +o0c0. The
Lyapunov exponent of the mean matrices (M,) is

1 1
= lim =EI Mo h—1ll = inf —EI Mo k—1ll.
7= lim ~Elog||Mon-1] = inf  Elog ||Mok-1l|

The following strong law of large numbers has been established
by Furstenberg and Kesten (1960) :

1
Jim —log||My1o] =~ P-as.



Introduction
O0000®

Model

1 1
= l|lim =EI My 1l = inf —=E1 Mn e 11l
v= Mmoo og ||Mo,n—1| itk og ||Mo k—1]|

Classification

We say that the multi-type branching process (Z) in the
random environment ¢ is :

@ sub-critical ify <0 (|| ZL| .0 P-as)

e criticalify =0  (||Z}]] LT, 0 Pas)

@ supercritical ify >0  (P(||Z. W, T00) > 0.)

Here we only consider the supercritical regime, i.e. v > 0.

For the critical and subcritical cases : see e.g. Vatutin &
Dyakonova (2020, 2018), Vatutin & Wachtel (2018), Le Page,
Peigné & Pham (2018) for the study of survival probability.
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Objective

Kesten-Stigum theorem on the GW process

The famous Kesten-Stigum theorem (1966) on the multi-type
Galton-Watson process (constant environment case) gives the
exponential increasing rate of the population size via a criterion
for the non-degeneracy of the limit of the fundamental
branching martingale.

Our work is motivated by getting a full extension of the
Kesten-Stigum theorem to the random environment case. We
will find exactly when the population size Z/,(j) grows like its
mean :

Z(j) = EeZ}(j) = Mo.n—1(i,)),
which implies that the process explodes to +oc at an
exponential rate, and permets us to compare in a precise way a

branching process in a random environment with the products
of random matrices.



Introduction
ooe

Objective

Extending Kesten-Stigum theorem to random
environment : long standing problem

Extending the Kesten-Stigum theorem to random environment
is a long standing problem. For the single type case (d=1), the
problem was solved by Athreya and Karlin (1971, sufficiency),

and Tanny (1988, necessity). But for the multi-type case

(d > 1), it has been open for about 50 years.

Our objective : solve this problem in the typical case, by
constructing a suitable martingale which reduces to the
fundamental branching martingale in the constant environment
case, and by establishing a criterion for the non-degeneracy of
its limit.

Applications : this work open ways in establishing other
fundamental limit theorems, such as law of large numbers,
central limit theorems with Berry-Essen bound, and large
deviation results.
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The multi-type Galton-Watson process

This is the constant environment case : each &, is equal to the
same constant. Thus the mean matrices M, are the same
constant (non-random) matrix :

M := My =M; = ... = const. matrix

Perron-Frobénius theorem

Assume that M is primitive, i.e. there exists n > 0 such that
M" > 0. Then the spectral radius p > 0 of M is a simple
eigenvalue of M, and there exist u, v € RY, respectively the
unique associated right and left eigenvectors such that :

eu>0 and v>0;

@ |lul=1 and (u,v)=1;

@ Mu=pu and MvT =pvT;

© M(i,j) ~ p"u(i)v(j), 1<ij<d.
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The multi-type Galton-Watson process

Kesten-Stigum theorem on G-W process (1966)

Assume that M is primitive with spectral radius p > 1. Then
there exist r.v.s W' € [0, 00) such that forall 1 <j < d,

Z\\))  Z)()) i
EZi(j)  Mn(i,j) nrios 1/

P-a.s.,

. i(j ;
or equivalently, pnf(ni()j\ZQ) — W' a.s. whereu,v > 0, Mu= pu, T = pv 7.
Moreover, max P(W' =0) < 1 (non-degenerate) iff

<i<

123><<dE(Z1 (j) log™ Z1 (j)) < 4oo. (%)

When (x) holds, then forall 1 < j < d, EW' =1, and a.s.

Wi=0}={|Z;ll = 0} {W>0}={|Z;] = -+oo}
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The multi-type branching process in random environment

Condition FK (Furstenberg- Kesten)

There exists a constant C > 1 such that
max Mo(/, f)
1< S ¢ pas.

~ min My(i
1<ij<d 0( 7/)

LLN for the components My ,_1(i,j) (Furstenberg-Kesten 1960)

Assume condition FK and E log™ ||Mp|| < +oc. Then for all
1<ij<d,

lim 1 log Mo n—1(i,j) =~ P-as.

n—+oo N
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The multi-type branching process in random environment

KS theorem (Grama-Liu-Pin, Ann. Appl. Prob. 2021+)

Assume condition FK, v > 0, and £ = (&n)n>0 i.i.d. Then there
exist random variables W' € [0, o) such that for all 1 <j < d,

Z\) __Zl) e g
EeZ}(j) ~ Mop_1(1]) nrise

Moreover, max P(W' = 0) < 1 (W' non-degenerate) iff
<i<

I' .

Zi(j) oo™ Z1(j) o, (%
(o7 % W) <+ )

When (x) holds, then for all 1 < i < d, a.s. EcW' = 1 and

W=0}={|Z;ll = 0} {W>0}={|Z;] — -+oo}

A similar version is found for stationarv and eraodic environment.
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The multi-type branching process in random environment

Remarks

@ When d = 1, due to Athreya-Karlin (1971) and Tanny
(1988)

@ Cohn (Ann. Prob. 1988) claimed the convergence in L2 of

IEgerIZ(’j()j)’ under some bounded conditions on the first and
second moments of the offspring distribution. But there is a
missing quantitative condition in his claim (which is

essential even in the single type case d = 1).

© Jones (1997), Biggins, Cohn and Nerman (1999) have
studied respectively the L2 and LP (p > 1) convergence of
multi-type branching processes in varying environment.
Their results give sufficient conditions for quenched LP
convergence for multi-type branching processes in random
environments.
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The Galton-Watson process

This is the constant environment case : all ¢, are equal to the
same constant, so that all the mean matrices M, are the same
constant (non-random) matrix :

M := My =M; = ... = const. matrix.

By the Perron-Frobenius theorem, when M is primitive, the
spectral radius p > 0 of M is a simple eigenvalue of M, with
unique right eigenvector u € RY such that :

e u>0;

° flulf=1;

e Mu=pu.
Obviously the last relation, M u = p u, is stable for products of
M:

M u=p"u n>1.
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The Galton-Watson process

Fundamental Martingale for the Galton-Watson process

Assume that M is primitive with spectral radius p > 1. Then for
all1 <ij<d,

- - (Z0u)
WI :1 WI — < n» !
0 ’ n an(I)’ n=1i,

is a non-negative martingale w.r.t. the filtration

Fn=0(Nk(),0<k<n-11<rj<dl>1),

so that W' := lim,_,., W! exists a.s. with values in [0, co).

@ The key point in the proof is the fact that M"u = p"u.
() Holw to extend thi$ to RE is not so clear : one would think of

s Uon—1) Zp,Uo.n—1

o oy W r 1l () with po n—1 the spectral radius of
MO,n—1 and MO,n—1 U(),n_1 = P0,n—1 U()7n_17 but these are not martingales.




The fundamental martingale
©00000

The multi-type branching process in random environment

Summary

Q The fundamental martingale

@ The multi-type branching process in random environment



The fundamental martingale
0®0000

The multi-type branching process in random environment

Consider the products of matrices :

Mn7n+k - Mn e Mn+k, n, k Z 0

My is allowable (every row and column contains a strictly
positive element) P-a.s., and P(3k > 0 My« > 0) > 0.

By the Perron-Frobenius theorem, under condition H, the
spectral radius pp nk of My nk is a strictly positive eigenvalue
of My nyk, With right and left eigenvectors Uy, . x and V), i«
such that :

@ Uppyk >0 and  Vppk >0;

° ||Un,n+k” =1 and <Un,n+ka Vn,n+k> =1;
° Mn,n+k Un,n+k = Pn,n+k Un,n+k;

° Ml{n-&-k Vn,n+k = Pn,n+k Vn,n+k-
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The multi-type branching process in random environment

Pseudo spectral radii of pos. random matrices (Hennion 1997)

Assume condition H. Then for all n > 0, a.s.

Unoo = lim  Uppik > 0 With ||Upoo| = 1;
k—+o0 ’ ’

the scalars \p = ||[MpUn1.0|| are strictly positive and satisfy

MnUn+17oo = )\nUnpo‘ (*)

@ The sequences (Up)n>0 et (An)n>0 are stationary and
ergodic, Un~ and A\, depend only on &n, £pyt,s - -

@ The numbers A\, are called pseudo spectral radii of (Mp).
@ The relation (*) is stable for products : for all n,k > 0,

Mp.nik Untki1,00 = Anngk Unoor  WIth Appik i= Ao Apyke
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The multi-type branching process in random environment

Fundamental martingale for the multi-type branching process in
random environment (Grama-Liu-Pin 2021+)

Assume condition H. Then forall 1 </ < d,

. . Z!, Unoo) (Z}, Un,oo)
WI:.]’ WI: < n» ~n, = n» » . n>1.
0 " Aon-1Uoeo(l)  (Mon—1Unca)(i) B

is @ non-negative martingale w.r.t. the filtration

Fn=0(E,Nix()),0<k<n-1,1<rj<dl>1),
under the laws P and P, so that

W' = lim W exists a.s. with values in [0, o).

n—oo

(Zp.u)

@ When &, = const., W/ = G (Z},u)

pu(i)

o Whend =1, W! = 2 m =5, ko(&).

Mo---Mp_1

since M"u = p"u.
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The multi-type branching process in random environment

Proof of the fundamental martingale

d Zir) d
Ee[Zy 1 (D Fal =YY BN ,() = D Zi(r)M(r, ) = (M] Z})()).
r=1 I=1 r=1

(EelZh 1] Fnl, Uni,00)
A0,nUo,00 (1)

MTZI, U oo . ; j
_ S )’\’0 n”UO "+(1I) ) (since Ee[Z),4|Fnl = M, Z})
_ <Z,£,, MnUn+1,oo>

)\O,nUO,oo(i)
Z AnUnoo -
_ W (since MpUni1.00 = AnUnc)
__(Z3 Unoo)
)\07n—1 UO,OO(I)

Ef[Wri»H “7:”] =

(Since )\07,, = /\07,7_1)\”) = Wr’l
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The multi-type branching process in random environment

Equivalence of the product \g 4

Assume condition H. Then

A0.n— ~ _1{Von_1,U P-a.s.
01, ™~  Pon 1(Vo,n—1, Un,oo)

<

LLN for the product Ag 1

Assume condition H and Elog™ || Mp|| < +oc. Then the
expectation E log \q is well defined, and

1
lim = log Agn—1 = Elog Ao =7 P-a.s.

n—-o00
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Applications

The Kesten-Stigum theorem can be applied to establish other
very interesting limit theorems such as :

@ Law of large numbers and large deviations for Z/(j) and
1ZE|| = 2,21 Z!(j) (total population of gen. n)
@ Central limit theorem, Berry-Essen bound and Cramér’s
moderate deviation expansion for Z:(j), and || Z.|.
LLN and CLT are immediate consequences : e.g. a.s. on the

survival event S := {||Zi|| — oo}, with Zi(j) = Mof B,

log Zi()) _ logMo,n-1(i.J) . log Z;())

_>
n n n g

as Zi(j) — W' € (0,00) a.s.on S.
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Berry-Esseen bound and Cramér’s LD expansion

For the rates of convergence in the LLN and CLT, a careful
analysis is still needed.

For example, using recent results on the products of random
matrices by Grama-Liu-Xiao (J. European Math. Soc., 2021+),
we obtained (see hal-02911865 and hal-02934081) :

@ Berry-Esseen’s bound for log || Z}|| , which gives the absolute
error in the Gaussian approximation :

log || Z;]] — my c /X 1T _¢p
Pl———————— < x)-9 <—, ¢ = ——e at.
)s(gﬂg < ov/n N X) (X)‘ —Vn ) —c0 V27

@ Cramér’s large deviation expansion , which gives an asymptotic
expression of the the relative error in the Gaussian approx. :

P (IogHZ:,i}—n'y > x)

o\vn
1—d(x)
More results can be found in the thesis by Erwan Pin (2020).

- (asym. expression), 0 < x = o(v/n).
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